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Nonlinear Regression Model for Ride on Railway

Bogdan ŻÓŁTOWSKI1, Leonel CASTANEDA2, Mariusz ŻÓŁTOWSKI3

Summary
Th e portable diagnosis system – SPD – evaluates the safety and ride quality aspects of the railway vehicles and the technical 
condition of the rail-vehicle interface. Th e objective of this article is to estimate the nonlinear regression model associated 
with the ride quality or motion behavior, by applying fuzzy clustering algorithms to the geometric data obtained from the 
technical condition of the railway-vehicle interface and measuring quasi-static lateral acceleration y*

qst in diff erent vehicles. 
Th e performance will be evaluated by comparing the measured acceleration y*

qst with the acceleration calculated in our 
model y*

qstM for 15 diff erent vehicles. Th e obtained results will be then compared with the results of the multiple linear 
regression model used previously for the same purpose.
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1. Introduction
Th e ride quality of passenger railway vehicles, ac-

cording to the UIC-518 norm from the International 
Union of Railways, is connected with the value of 
acceleration y*

qst, which should have a limit value of 
1,5 m/s2 [12]. Due to the high cost involved in mea-
suring of the acceleration y*

qst of each vehicle, it is nec-
essary to obtain a tool (model) that allows predicting 
the behavior of the acceleration y*

qst  according to the 
measured 23 geometric variables which are routine-
ly measured in the normal preventive maintenance 
routine of the railway, without the need of perform-
ing a y*

qst measuring process. Many of the traditional 
method used to solve this problem are based on glob-
al models like Polynomials (ARMA, ARX, NARMX, 
NARMAX) [6, 17, 20], radial basis functions and neu-
ral network [21, 10, 16, 19], fuzzy clustering [1, 17]
among others some of them are used in similar rail-
way applications in the world [7, 8].

Th e fuzzy clustering is to approximate a nonlin-
ear regression problem by decomposing into several 
local linear models; this approach has advantages in 
comparison to global nonlinear models [1, 24]. Th e 
model structure is easy to understand and interpret, 
both qualitatively and quantitatively. Besides, the ap-
proach has computational advantages and goes down 
to straightforward adaptive and learning algorithms. 

To show the feasibility of the approach, we will com-
pare the obtained results using fuzzy clustering with 
the Babuska toolbox [1] with the results obtained 
with the multiple linear regression model used previ-
ously for the same purpose [24].

Th is article is part of the development of SPD (Por-
table Diagnostic System, [35, 13, 18, 2324], which 
consists of the measurement of the vehicle’s variables 
allowing the identifi cation of the technical condition 
for the vehicle-railway interface.

Section 2 of paper introduces the element for the 
regression used in the SPD system; in section 3 we 
will review the nonlinear regression; section 4 will 
detail the fuzzy clustering methodology; and sections 
5  and 6 will show the results the comparison with 
NRL (multiple nonlinear regression) [24] and conclu-
sions respectively.

2. Study system

Th e Metro system of Medellín was created on may 
1979 by the Municipality and Antioquia Department, 
allowing the creation of the Metro Company. Descrip-
tion of the railroad (Fig.1):
 Line A: paralell to the Medellín River and with 

the length of 23.2 km, with 19 stations in North to 
South direction.
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 Line B: it starts from the centre of the city in San 
Antonio B Station and goes westwards. It has the 
length of nearly 5.6 km and has 7 stations.

 Linking Line: it connects the two lines described 
above and has the length of 3.2 km.

 Line K: it is a cable transport system that connects 
the Acevedo Station. It consists of 4 stations the 
length of 2.4 km.

Fig. 1. Metro System of Medellín

In order to extract the data, both estimators given 
by the UIC 518 standard and the geometric variables, 
the complete railroad of the train is taken and the 
measuring points were classifi ed by sections, just as 
the standard UIC-518 recommends. Th e three zones 
proposed by the standard are considered: tangent 
tracks, large radius curve tracks and low radius curve 
tracks; however, the lengths of sections composing 
diff erent zones were adapted according to the distri-
bution of the Line A road of the Metro system. Th e 
considered lengths were:
 tangent track: 160 m,
 large radius curve track: 70 m,
 short radius curve track: 70 m.

2.1. Data acquisition

Th e Portable Diagnostic System – SPD – is a unique 
solution for railway systems which, apart from evalu-
ating safety, ride quality and monitoring the condi-
tion of geometric parameters of the track-vehicle in-
terface, also allows carrying out the multidimensional 
monitoring of the condition and to determine the 
failures of passenger vehicles of the Metro [35, 24].

To develop this diagnosis tool, diff erent method-
ologies were used, grouping several modern and ef-
fective methods in diagnosis tasks, which go from the 
selection of measurement points, through the method 
of evaluation of compliance with UIC-518 standard 
until the utilization of an optimized forecast method 
[35, 12, 24,].

Th e system is composed of eight modules: sensors, 
signal processing, condition monitoring, condition 
testing, incipient failures detection in the wheel-rail 

interface, decisions support, forecast and presenta-
tion. In the Fig. 2, the SPD module structure is shown.

Fig. 2. Module of the SPD

Th e signal obtained by the SPD allows calculat-
ing the lateral and longitudinal forces generated in 
the wheel-rail along the track which are necessary for 
safety evaluation. Th e UIC-518 standard describes the 
experimental procedures to follow in order to carry 
out the motion tests and the analysis of the results, in 
terms of quality and rolling from the point of view of 
dynamic behavior in relation to safety, railroad wear 
and running behavior (ride quality) with the purpose 
of an approval for the international railway traffi  c. 
Table 1 presents the diff erent estimators considered 
by the standard. It was necessary to acquire accelera-
tion and forces signals in diff erent parts of the train to 
calculate the estimators [19].

Since this article is limited to the ride quality eval-
uation, the estimator to use will be the acceleration 
yqst. According to the UIC-518 standard [12] the limit 
value of this acceleration of 1,5 m/s2, defi nes the ride 
quality or motion behavior of the vehicle.

Th is estimator is obtained from the lateral acceler-
ation signal, taken form the vehicle body. Th ese mea-
surements are fi ltered by Butterworth 8th digital fi lter, 
order 8 and cut-off  frequency of 20 Hz.

2.2. Geometric variables

Among the current maintenance routines of the 
railway system, diff erent geometric variables that give 
an idea of the technical condition of the rail. Table 2 
contains information also on equivalent conicity 
which is related to vehicles.

3. Principles of regression

Generally, fuzzy systems are approximations of 
functions. Because of this, they can also be used in 
nonlinear regression problems. Th e nonlinear regres-
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Table 1
Estimators for safety, ride quality, and track fatigue according to the UIC-518 Standard

Estimator Description Units Limit Value
SY2m Sum of guiding forces for axle kN 66.7

SY2m (99,85%) Sum of guiding forces for axle, Percentile 99.85%. kN 66.7
SY2m (0,15%) Sum of guiding forces for axle,Percentile 0.15%. kN 66.7

sSY Weighted r.m.s of Sum of guiding forces por axle kN 33.3
Yqst Quasi-static force between wheel and rail m/s2 60
y:*q Lateral acceleration in the vehicle body. m/s2 2.5

y:*q (99,85%) Lateral acceleration in the vehicle body, Percentile 99.85% m/s2 2.5
y:*q (0,15%) Lateral acceleration in the vehicle body, Percentile 0.15% m/s2 2.5

sy:*q Weighted r.m.s of Lateral acceleration in the vehicle body m/s2 0.5
y:*qst Quasi-static acceleration in the vehicle body m/s2 1.5
z:*q Vertical acceleration in the vehicle body m/s2 2.5

z:*q (99,85%) Vertical acceleration in the vehicle body, Percentile 99.85% m/s2 2.5
z:*q (0,15%) Vertical acceleration in the vehicle body, Percentile 0.15% m/s2 2.5

sz:*q Weighted r.m.s of Vertical acceleration in the vehicle body m/s2 0.75
I Cant defi ciency mm 150

Table 2
State of variables

Geometric Variable Description Units Limit Value
X1 Equivalent conicity with standard deviation of 1.25 under the UK method N/A
X2 Equivalent conicity with standard deviation of 2.5 under the UK method N/A
X3 Equivalent conicity with standard deviation of 3.75 under the UK method N/A
X4 Maximum speed vehicle km/h 80
X5 Standard deviation of the vertical alignment Mm 2.3
X6 Standard deviation of the horizontal alignment Mm 1.5
X7 Cant defi ciency Mm 150
X8 Curve radius M 0
X9 Horizontal alignments Mm 3

X10 Height diff erence between the head of the high and low thread Mm 3
X11 Vertical alignments Mm 10
X12 Gap between the internal rail faces Mm 3
X13 Synthetic coeffi  cient of the railroad quality Mm 0
X14 Vertical wear of the head rail for the high rail (east-south) Mm 12
X15 Vertical wear of the head rail for the high rail (west-north) Mm 12
X16 r.m.s of the corrugation for the high rail for a wave lenght between 30 and 100 mm Mm 10
X17 Excess percentage for the high rail for a wave length between 30 and 100 mm % 50
X18 r.m.s of the corrugation for the high rail for a wave length between 100 and 300 mm Mm 20
X19 Excess percentage for the high rail for a wave length between 100 and 300 mm. % 50
X20 r.m.s of the corrugation for the low rail wave length between 30 and 100 mm Mm 10
X21 Excess percentage for the low rail for a wave length between 30 and 100 mm % 50
X23 r.m.s of the corrugation for the low rail for a wave length between 100 and 300 mm Mm 20
X24 Excess percentage for the low rail for a wave length between 100 and 300 mm % 50
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sion is a modeling of static dependence of the response 
of a variable called regressor, where: y  Y  , is a 
regression vector, x = [x1, x2, ... xp]T, over the X p  
domain. Th e elements of the regression vector can be 
called regressors and the X domain can be called re-
gressor space. Th e system generated by the data can 
be described by:

 ( )y f x  (1)

Th e deterministic function f(·)captures the depen-
dence of y in x, and the symbol ≈ refl ects the charac-
teristics of  y that are not exact in function of x. Th e 
objective of the regression is to use the data in order to 
build a function F(x) as an approximation to f(x) not 
only because of the data, but because of the domain 
itself. Th e defi nition of a reasonable approximation 
depends on the purpose for which the model is built. 
If the objective of the model is to obtain predictions of 
y, the accuracy must be the most relevant criteria. Th e 
accuracy insuffi  ciency is usually known as the integral 
error over the domain.

 x

( ) ( ) I f x F x dx  (2)

Generally, this error can not be computed, since 
the value of f is only known with the availability of the 
data. However, the mean of the error prediction of the 
available data is oft en used

 1

1 ( ) ( )
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N
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where N is the number of data in the sample.

Apart from the prediction accuracy, the objective 
can also be to obtain a model which can be used in 
order to analyze and understand the real properties 
of the data generator system. Th e potential of fuzzy 
models is that they describe systems as the collec-
tion of simple local sub-models expressed by rules. 
Th e rules can be formulated using a natural language 
which is more understandable than a mathemati-
cal language. Th e rules can also be combinations of 
analytical models commonly used in the control fi eld 
of engineering, like the local linear models in Takagi-
Sugeno [20].

Th e input of our model are 23 geometric variables 
of the rail state, and with them, the modeled accelera-
tion YqstM is calculated. An arrangement is conformed 
having a row for each of the n geometric variables 
measured for each section, and a column for each of 
the Nsections. Th is arrangement is called the matrix 
of observation X.
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Traditionally, the clustering terminology defi nes 
the columns of the matrix of observation X as char-
acteristics or attributes, while the rows are called pat-
terns or objects.

4. Fuzzy clustering logics

It is defi ned as cluster, the subset of data which are 
more similar among them than with other data from 
another subset. Th ere are diff erent types of data as-
sociation or clustering, one of the most popular the 
Hard clustering which refers to grouping data in spe-
cifi c clusters mutually exclusive (see Fig. 3), meaning 
that the data belongs only to one cluster and not to 
several clusters at the same time. In Figure 3, the data  
z5 could belong to both clusters c1 and c2, this data is 
not taken into account when using the Hard cluster.

Fig. 3. Data set [1]

It is reasonable to think that on the border of two 
clusters c1 and c2 there are some points which have 
a degree of belonging to both clusters. Th e algorithm 
c-means allows that each point belongs to a cluster 
with a certain degree of belonging, so each point be-
longs to several clusters. Th is makes the fuzzy cluster-
ing, in some real situations, to be more natural than 
the Hard clustering.

4.1. Partition Fuzzy

Th e objective of clustering is to divide the data set 
Z = {z1, z2, ... zN} in c clusters (2 ≤ c ≤ N)), that partition 
U = [uik], where uik is the degree of belonging of i-th 
point to the cluster k. U represents a fuzzy partition if 
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the points meet the following conditions:
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Defi ning the fuzzy partition space as:
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4.2. Algorithm for Fuzzy C-Means

Th ere are diff erent algorithms for fuzzy clustering, 
the most used is the „C-Mean” algorithm. Th is algo-
rithm makes the data partition, and it can be mini-
mized the objective function [17]:
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where:
Z = {z1, z2, ... zN} – is the data set to classify; (9)
U = [uik]  Mfc – is the partition matrix Z; (10)
V = {v1, v2, ... vc}, vi  n – is the centre vector 

(clusters) to fi nd; (11)
dik

2 = ||zl – vi||2 – is the Euclidian norm, distance 
from the data to the center of the cluster; (12)

m  [1,∞) – is an exponent that determines the 
fuzziness of the obtained cluster; (13)

Th e steps of the algorithm are:
 to select a belonging matrix,
 to start the number of clusters,
 to calculate the centroid of the clusters:
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 to calculate the Euclidean distance:
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 to update the belonging matrix:
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Th e equation (14) gives the value v1 which is the 
weighted average of the data belonging to a cluster, 
where the weights are the belonging functions. Th is 
algorithm presents the following disadvantages:
 the fi nal results depend on the fi nal partition,
 the number of clusters is defi ned at the beginning 

of the algorithm,
 the Euclidean distance method allows detecting 

only spherical clusters.

Th is very last feature is a drawback because the 
ideal shape of data grouping is given by an ellipse 
(Fig. 4), so the most appropriate algorithm is the one 
called „Gustafson-Kessel” because this one looks for 
hyper ellipsoids clusters, which detects the quasi-lin-
ear behavior of data very well.

Fig. 4. Clusters of diff erent shape [1]

4.3. Gustafson-Kessel (GK) algorithm

Th is algorithm is found among the adaptive dis-
tance algorithms. Th is one extends the fuzzy c-means 
by choosing a diff erent norm Bi for each cluster in-
stead of keeping it constant.

    2   
T

ikB k i i k id z v B z v  (17)

where: Bi are the possible optimization matrixes of the 
objective function, and correspond to the covariance 
of each cluster. 

Th en, the objective function is defi ned as follows:
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In order to obtain a viable solution, Bi must be 
somehow limited. In this case, we will keep its volume 
constant by fi xing the determinant of Bi:

  
1

12
i idet    i iB F F  (19)

where: Fi is the covariance matrix for each cluster.
Th e GK algorithm fi ts the purpose of identifi cation 

because it has the following characteristics:
 the cluster dimension becomes limited by measur-

ing the distance and by the defi nition of the clus-
ters prototype as a point;

 in comparison to other algorithms, GK is relatively in-
sensitive to the initialization of the partition matrix.

Once we have the groups of data, the next step is 
to derive the interference rules which identify a fuzzy 
model. To achieve that, there are diff erent types like:
 Mandami: fuzzy rules with fuzzy antecedents and 

fuzzy consequents.
 Takagi-Sugeno (TS): fuzzy rules with fuzzy ante-

cedents and consequents that could be expressed in 
a simple way like the fi rst order linear model [20].

Because the TS fuzzy model is an eff ective tool for 
the approximation of nonlinear systems based on the 
information of inputs and outputs through the inter-
polation of local linear models, which for this case are 
determined by the cluster, we use this TS model in 
the solution of the identifi cation of the model we are 
looking for. Th e solution consists of projecting the be-
longing of the obtained cluster in the desired space 
(Fig. 5), thus obtaining belonging functions from the 
cluster.

Fig. 5. Extraction of rules by fuzzy clustering [1]

4.4. Takagi-Sugeno Model

In the Takagi-Sugeno model, the consequent rules 
are function of the inputs [20]:

 Ri: If x is Ai Th en yi = fi(x), i = 1, 2, ..., K (20)

where: x   is the input variable (antecedent), Ai is 
a multidimensional fuzzy set (cluster), yi is the output 
variable (consequent), Ri is the its rule and K is the 
number of rules of the rules set.

Th e consequent function can be linearly expressed as:

 yi = aT
ix + bi (21)

Substituting (21) in (20) we get:

 Ri: If x is Ai then yi = aT
ix + bi (22)

Given the outputs of the individual consequents yi, the global output and the Takagi-Sugeno model is 
calculated by:
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where: βi is the commitment degree of the antecedent 
of the its rule, calculated as the belonging degree of x 
in the interior of the Ai cluster:

 βi(x) = μi(x) (24)

normalizing,
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therefore the TS model could be interpreted as a quasi-
linear model with dependence on the input x parameter.
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Fig. 6 and 7 shows an example of a function 
y = f(x), represented by four TS rules.

Fig. 6. Takagi-Sujeno fuzzy clustering [20]
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Fig. 7. GK y TS fuzzy clustering [1]

Th e antecedent of each rule defi nes a valid zone 
(fuzzy) for the correspondent linear model of the 
consequent. Th e global output function is calculated 
through weighting the local linear models.

5. Numerical result

During this work, the toolbox developed by Ba-
buska [1] from the Delft  Centre for System and Con-
trol was used. Th is tool was developed to be worked 
on MATLAB (Fig. 8).

Fig. 8. Normalization of a matrix

where: x – is the measure of each variable, S – is the 
standard deviation.

Th e quality of the model is evaluated by calculat-
ing the average error, its equivalent in the used tool-
box corresponds to the percentile variance accounted 
(VAF) [1], between the real and the estimated data. 
Th is coeffi  cient is obtained between two signals:
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where the value of VAF will be 100% if both signals 
are equal. If the values are quite diff erent, the value of 
VAF will tend to zero. 

For each vehicle, the following procedure was fol-
lowed:
 the matrix is normalized;

 the matrix is divided in two sections, one for the 
identifi cation of the model and the other to carry 
out the verifi cation of the obtained model,

 the real acceleration with the obtained model by 
multiple linear regression was plotted [22, 14]. 
Th is was also used to determine the ride qual-
ity model [24], therefore it will be a reference to 
validate our results and the obtained result by the 
fuzzy clustering method,

 the VAF coeffi  cient is calculated to determine the 
accuracy of the model compared with the real data.

Th e best results were obtained using the toolbox 
with the following parameters:
FM.c = 12; % number of clusters,
FM.m = 2.8 % fuzziness parameter,
FM.tol = 0.1; % termination criterion,
FM.ante = 2; % 2 – projected MFS,
FM.cons = 2; % 2 – weighted LS,
where: FM is the defi ned structure by Babuska in 
MATLAB for the parameters of the toolbox.

Table 3 presents the obtained results with the fuzzy 
nonlinear regression model and the obtained results 
with the multiple regression model [24].

Table 3
Models measurements results with the fuzzy nonlinear 

regression

Item Unit Regression 
Lineal (%VAF)

Fuzzy Clustering 
(%VAF)

1 05 76.16 100

2 09 97.52 100

3 10 80.01 95.53

4 12 86.89 100

5 13 87.03 99.17

6 15 78.69 100

7 17 87.19 100

8 19 92.66 100

9 22 86.81 100

10 24 94.7 100

11 34 84.93 100

12 35 70.86 99.07

13 38 77.83 100

14 40 94.15 92.28

15 41 92.5 92.6

Figure 9 shows the measured data of the accel-
eration and the model output data obtained by fuzzy 
clustering for the vehicle 05.
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It is noticeable that in the table of results there is a 
VAF of 100%, which corresponds to the line at 45° of 
the Figure and besides faithfully produced accelera-
tion, as shown in the Fig. 9. 

In Table 3, it is observed that the worst VAF coeffi  -
cient corresponds to the vehicle 40, with a VAF of 92.28. 
If we plot the data (Fig. 10), it can be clearly observed 
which model did not estimate the data well, leaving it 
out of the comparative graphic of 45° (Fig. 10). 

Th is could be due to tuning problems of the model, 
either in the sensors installation, diff erent geometric 
conditions of the rail or the equipment capacity, etc. To 
obtain a general model, all the samples of the 15 vehi-
cles in the matrix were taken, and then a pre-processing 
consisting of interchanging the fi les randomly was per-
formed. Aft erwards, the same process on each vehicle 
individually was performed and the results were a VAF 
of 97.35. It can be graphically observed in Figures 11.

Fig. 9. Plot Yqst vs. output fuzzy model vehicle 05 and real acceleration curve

Fig. 10. Plot Yqst vs. fuzzy model output Vehicle 40 and real acceleration curve

Fig. 11. Plot Yqst vs. Fuzzy general model output and real acceleration general model curve
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6. Conclusions

In this article, the main Fuzzy clustering aspects 
for the model identifi cation were revised.

Although the obtained results with the linear 
multiple regression are satisfactory, comparing the 
obtained results, we fi nd that the quality of the fuzzy 
model is better in 14 out of 15 analyzed vehicles, and 
only one vehicle of the model of linear multiple re-
gression is better with the fuzzy model.

We showed that Fuzzy clustering is a good tool to 
approximate nonlinear functions, especially the Tak-
agi-Sugeno model.

Th is regression model can be integrated into the 
process for decision support in the maintenance of 
rail-vehicle interface to reduce the cost associated 
with the maintenance work, human resources and the 
increase of system reliability.

Due to the reasons explained before, when it comes 
to identifying a nonlinear model, we recommend the 
fuzzy model to be used in future implementations 
among the SPD.
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Nieliniowy model regresji w kolejnictwie

Streszczenie
Przenośny system diagnostyczny – SPD ocenia aspekty bezpieczeństwa i jakości biegu pojazdów kolejowych 
oraz stanu technicznego pojazdu kolejowego. Celem niniejszego artykułu jest oszacowanie nieliniowego mo-
delu regresji związanego z zachowaniem jakości jazdy, przez zastosowanie rozmytego algorytmu klastrowania 
danych geometrycznych stanu technicznego pojazdu kolejowego i pomiary quasi-statyczne przyspieszeń po-
przecznych pojazdów szynowych. Będzie to ocena porównawcza zmierzonego realnego przyspieszenia z przy-
spieszeniem obliczonym skonfi gurowanego modelu dla 15 różnych pojazdów. Uzyskane wyniki będą porówna-
ne z wynikami modelu liniowej regresji wielokryterialnej, które były dotychczas w tym celu stosowane.

Słowa kluczowe: model regresji, kolejnictwo, zbiór rozmyty

Нелинейная модель регрессии в железнодорожном транспорте

Резюме
Портативная система диагностики  ПСД – оценивает аспекты безопасности и качества движения же-
лезнодорожных подвижных единиц и технического состояния единицы подвижного состава. Целью 
этой статьи является оценка нелинейной модели регрессии связаной с сохранением качества движения 
через употребление нечеткого алгоритма кластеризации геометрических данных, технического состо-
яния единицы подвижного состава и квази-статистических измерений поперечного ускорения единиц 
подвижного состава. Это будет сравнительная оценка измеренного реального ускорения с ускорени-
ем расчитанным модели сконфигурованной для 15 разных единиц подвижного состава. Полученные 
результаты будут потом сравнены с результатами модели линейной регрессии нескольких критериев, 
которые до сих пор использовались для этой цели.

Ключевые слова: модель регрессии, железнодорожный транспорт, нечеткое множество


